All functions

algorithms()

Library of Machine learning procedures

datagenPaper()

Simulation settings from Gonzalez Ginestet et al. (2019+). "Stacked IPCW Bagging bagging: a case study in the HIV care registry"

ipcw_auc()

IPC Weighted AUC Loss Function

parametersSimulation()

Parameter Values for the Simulation

plot_roc()

Plot IPCW ROC curve

prediction_discard()

Prediction discarding censored observations

ipcw_ensbagg() ipcw_genbagg() ipcw_brier() ipcw_crossentropy() tune_lasso() optimun_auc_coef() risk_auc() MLprocedures() ML_list MLprocedures_natively() ML_list_natively grid_parametersDataHIV()

Algorithm 2: Procedure to obtain optimally the coefficients to be used in Algorithm 1

stackBagg()

Stacked IPCW Bagging

tune_params_ml()

Tuning parameter selection